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Abstract

We present a robust integral equation method for the calculation of the electrostatic and thermal properties of sys-
tems made of piecewise homogeneous, high contrast materials. By high contrast, we mean that the electrical or thermal
conductivity ratios are high.

Our approach involves a modification of the standard integral representation using, in electrostatic terms, the polar-
ization charge as an unknown. It is related to the perturbation approach proposed by Tausch and White [J. Tausch, J.
White, Capacitance extraction of 3-D conductor systems in dielectric media with high-permittivity ratios, IEEE Trans.
Microwave Theory Tech., 47 (1999) 18–26], but based on a simple form of projection rather than on the solution of
auxiliary integral equations. Numerical implementation is straightforward in the multiple dielectric case.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A classical problem in electrostatics and heat conduction concerns the solution of the Poisson or Laplace
equation in domains consisting of piecewise homogeneous materials. The governing equation can be writ-
ten in the form
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�rð�ruÞ ¼ f ; ð1:1Þ

where � is piecewise constant, subject to some appropriate boundary or radiation condition on u. We will
refer to the function � as the conductivity: regions with high values of � are good conductors and regions
with low values of � are poor conductors.

Such problems are often referred to as ‘‘interface’’ problems because the differential equation can be
reformulated as follows: find a continuous function u which satisfies the Poisson equation in each phase
(where � is constant), and whose flux � ou

om is continuous across each interface. Without loss of generality,
we restrict our attention to the solution of (1.1) when the source distribution f is given by a small number
of point sources and the dynamic range of � is large.

In earlier work, such as [3,7,12,17], fast algorithms were developed for such problems based on combin-
ing a suitable boundary integral equation with the fast multipole method [2,6,8,9] and an iterative solver
such as GMRES [20]. Other fast algorithms [1,11,18,25] and other iterative methods [4,21] could equally
well be used. At low contrast, these schemes are essentially optimal; the CPU time required grows linearly
with the number of points in the discretization of the boundaries and interfaces defining the geometry.
Unfortunately, when the material contrast is high, the standard integral equation can become ill-condi-
tioned. In this paper, we show that the nature of the ill-conditioning is easily understood and construct
a new integral representation which is stable and robust. Our method builds on the work of Tausch et
al. [22,23], who developed what we believe to be the first effective solution procedure for this class of prob-
lems. We have been able to replace the Tausch–White–Wang perturbation theory with a more direct
approach, based on an elementary but systematic analysis of flux.
2. Classical potential theory

In describing the standard approach, we will find it convenient to make use of the language of scattering
theory. For this, let us begin with the simplest problem, the determination of the electric field in an infinite
medium D0 of conductivity �0 in which is embedded an inclusion D1 of conductivity �1 (Fig. 1).

We assume that the right-hand side f is given by
f ðxÞ ¼ q0dðx� x0Þ þ q1dðx� x1Þ;
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An inclusion D1 with conductivity �1 embedded in an infinite medium D0 with conductivity �0. x0 denotes a point in D0 and x1
s a point in D1.
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where x1 2 D1 and x0 2 D0. We define the driving field as the field in the infinite medium due to the point
sources alone, based on the local conductivity. In other words, in two dimensions, we have
udr ¼ q0
2p�0

log
1

kx� x0k
þ q1
2p�1

log
1

kx� x1k
. ð2:1Þ
In three dimensions, we have
udr ¼ q0
4p�0

1

kx� x0k
þ q1
4p�1

1

kx� x1k
. ð2:2Þ
We define the scattered field usc by
usc ¼ u� udr;
where u is the total potential which satisfies (1.1). By construction, udr is continuous across the interface oD1

and it is straightforward to see that usc must satisfy
r2usc ¼ 0 in D0; ð2:3Þ
r2usc ¼ 0 in D1; ð2:4Þ
usc½ � ¼ 0 on oD1; ð2:5Þ

�
ousc

om

� �
¼ � �

oudr

om

� �
on oD1. ð2:6Þ
Here, the expression [f] denotes the jump in the quantity f across the interface.
Following standard practice [7,13,14,24], we represent usc as a single layer potential
uscðxÞ ¼
Z
oD1

Gðx; yÞ rðyÞ dsy; ð2:7Þ
where Gðx; yÞ ¼ 1
2p log

1
kx�yk in 2D, Gðx; yÞ ¼ 1

4p
1

kx�yk in 3D, r is an unknown ‘‘polarization’’ charge density
defined on the interface, and dsy indicates that the integral is a boundary integral. For the sake of simplicity,
we will restrict our attention to the 2D case. Readers unfamiliar with integral equation methods should con-
sult the references above or the more mathematical texts [10,16] for background material. One well-known
theorem we require as follows.

Theorem 2.1 ([10,14,16]). Let r be a continuous function on oD1, let y
0 2 oD1 and let m(y 0) be the unit normal

vector to oD1 at y
0. Then the single-layer potential (2.7) is continuous across oD1 and satisfies the following

jump relations:
ousc

om�
ðy0Þ � lim

x!y0

x2D1

ousc

omðy0Þ ðxÞ ¼
1

2
rðy0Þ þ

Z
oD1

oG
omðy0Þ ðy

0; yÞrðyÞ dsy; ð2:8Þ

ousc

omþ
ðy0Þ � lim

x!y0

x2D0

ousc

omðy0Þ ðxÞ ¼ � 1

2
rðy0Þ þ

Z
oD1

oG
omðy0Þ ðy

0; yÞrðyÞ dsy. ð2:9Þ
We will make use of the operator notation
KD1
rðy0Þ ¼

Z
oD1

oG
omðy0Þ ðy

0; yÞrðyÞ dsy
to denote the normal derivative of the single-layer potential restricted to the interface. When the context is
clear, we will abuse notation and drop the subscript from K.
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From the representation (2.7), it is clear that Eqs. (2.3) and (2.4) are automatically satisfied. Since the
single-layer potential is continuous across the interface, (2.5) is also satisfied. Imposing the remaining con-
dition (2.6) and using Theorem 2.1, we obtain a Fredholm integral equation of the second kind for r:
1

2
rðy0Þ þ k

Z
C

oG
omðy0Þ ðy

0; yÞrðyÞ dsy ¼ �k
oudr

om
ðy0Þ; ð2:10Þ
where k = (�1 � �0)/(�1 + �0). In operator notation,
1

2
rþ kKr ¼ �k

oudr

om
.

Remark 2.1. In R2, oG
omðy0Þ ðy0; yÞ has a removable singularity when y 0 = y. More precisely,
lim
y!y0

oG
omðy0Þ ðy

0; yÞ ¼ 1

2
jðy0Þ;
where j is the curvature of oD1. For infinitely differentiable curves, the kernel is infinitely differentiable. As
a result, the trapezoidal rule using an equispaced discretization is ‘‘spectrally accurate.’’ That is, the error
goes to zero faster than any finite power of 1/N, where N points are used in the discretization of the bound-
ary. In R3, the kernel oG

omx
ðx; yÞ has an integrable singularity and high-order schemes are significantly more

involved.

Two more well-known results from potential theory follow.

Theorem 2.2 ([15,16]). If the homogeneous integral equation
1

2
rðy0Þ þ k

Z
C

oG
omðy0Þ ðy

0; yÞrðyÞ dsy ¼ 0 ð2:11Þ
has a nontrivial solution, then k 2 R and lies on the rays k P 1 or k < �1.
Corollary 2.3. As long as the ratio �1/�0 is bounded and lies away from the negative real axis, the integral

equation (2.10) has a unique solution.

Mathematically speaking, the story appears complete: one should simply be able to discretize Eq. (2.10)
and solve it. At high contrast, however, a complicating phenomenon occurs. Fig. 2 shows the error in the
numerical solution of the integral equation as a function of contrast ratio when D1 is an ellipse in two
dimensions with a point source q1 = 1 at x1 as shown in Fig. 1. In these experiments, we use the trapezoidal
rule (see Remark 2.1) with 200 points and Gaussian elimination to solve the 200 · 200 linear system. To
study the stability of the scheme, we add random noise to the entries of the system matrix of relative mag-
nitude 10�3, 10�5, 10�7. In practice, such errors could stem from either noise in the data, errors in the geom-
etry representation, or discretization error. Note that, for �1 6 �0, the error is proportional to the noise. As
R = �1/�0 ! 1, however, there is a systematic loss of accuracy.

From an abstract viewpoint, the problem is that, in the limit �1/�0 ! 1, the parameter k ! 1 and the
integral equation is not invertible. In fact, for k = 1, the reader with some experience in potential theory
may recognize the left-hand side of (2.10) as the integral operator corresponding to the interior Neumann
problem, which is well-known to be rank-1 deficient. In the other direction, when �0/�1 ! 1, the parameter
k ! �1 and the integral equation is nonsingular. Here, the experienced reader may recognize the left-hand
side of (2.10) as the integral operator corresponding to the exterior Neumann problem, which is invertible.
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Fig. 2. Error in the solution of the integral equation (2.10) as a function of contrast ratio. If R = �1/�0, then R!1 as the inclusion
becomes highly conducting. If R! 0 as the inclusion becomes poorly conducting.
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Before proceeding with our detailed analysis of operators, let us carry out one more experiment. We
‘‘turn off’’ the source inside the high dielectric inclusion, i.e. we let q1 = 0, q0 = 1, and repeat the experiment
of Fig. 2. Note that this only changes the right-hand side of the integral equation. The outcome is shown in
Fig. 3 with no degradation of accuracy seen.

One obvious difference between this experiment and the first is that there is no net flux through the
dielectric interface in the present case, while there was a net flux in the first. This turns out to be the crux
of the problem.
3. Mathematical formulation

In this section, we describe a modification of the classical integral equation which removes the ill-
conditioned behavior.
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Fig. 3. Error in the solution of the integral equation (2.10) as a function of contrast ratio when q1 = 0.
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3.1. A single inclusion

Let us consider again a domain of piecewise constant conductivity with one bounded inclusion D1 where
�(x) = �1 for x 2 D1 and �(x) = �0 for x 2 D0 ¼ Rd nD1. The corresponding interface problem in the plane
with P point sources xp 62 C = oD1 is given by
�r � ð�ðxÞruðxÞÞ ¼
XP
p¼1

qpdðx� xpÞ. ð3:1Þ
This equation has a unique solution once a radiation condition is specified. We assume that u(x)! udr(x) as
|x| ! 1, where
udrðxÞ ¼
XP
p¼1

udrp ðxÞ;

udrp ðxÞ ¼
qp
�ip

Gðx; xpÞ
ð3:2Þ
for xp 2 Dip . The function udrp ðxÞ can be thought of as a ‘‘particular solution’’ induced by the pth point
source. As before, the solution can be written as the sum of the driving field and a scattered field u(x) = udr

(x) + usc(x), where
uscðxÞ ¼
Z
C
Gðx; yÞrðyÞ dsy.
From the continuity of flux condition, we obtain the integral equation
1

2
I þ kK

� �
r ¼ �k

oudr

om
. ð3:3Þ
Let us now consider the limiting case k = 1. This is precisely the integral equation we would obtain if we
were to solve the interior Neumann problem for the Laplace equation with right-hand side given by the
Neumann data g(y 0) on the boundary C of domain D1:
1

2
I þ K

� �
rðy0Þ ¼ gðy0Þ. ð3:4Þ
It is well-known that Eq. (3.4) is rank-1 deficient, and that the problem is not invertible unless
Z
C
gðyÞ dsy ¼ 0. ð3:5Þ
In other words, the solvability condition is that the net flux through the boundary is zero. To carry through
the standard Fredholm-type analysis, we define the null-space of the operator by
N1 ¼ r j ð1
2
I þ KÞr ¼ 0

� �
. ð3:6Þ
We also denote by 1 the constant function that takes the value 1 along C. The integral equation (3.4) is well-
conditioned as a map from say L2 nN1 ! L2 n 1. We will refer to the latter space as the space of functions
with mean zero.

Returning now to the interface problem, suppose that k is near 1 (the difficult case) and that r 2 N1.
Then
ð1
2
I þ kKÞr ¼ ð1

2
I þ KÞrþ ðk� 1ÞKr ¼ ðk� 1ÞKr. ð3:7Þ
A straightforward calculation shows that
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1

2
I þ kK

� ��1
�����

�����P
1

jk� 1jkKk . ð3:8Þ
This is precisely why the integral operator 1
2
I þ kK is singular as k approaches to 1 (or �1/�0 ! 1).

On the other hand, suppose that the right-hand side satisfies the mean zero condition (3.5). Then we may
write
1

2
I þ kK

� ��1

¼ 1

2
I þ K

� �
I þ 1

2
I þ K

� ��1

ðk� 1ÞK
 ! !�1

ð3:9Þ

¼ I þ 1

2
I þ K

� ��1

ðk� 1ÞK
 !�1

1

2
I þ K

� ��1

. ð3:10Þ
The boundedness of ð1
2
I þ kKÞ�1 now follows from the fact that ð1

2
I þ KÞ is a bounded operator as a map

from L2ðCÞ nN1 ! L2ðCÞ n 1 and the fact that the first term on the right-hand side of (3.10) can be
expanded in a Neumann series for k � 1. The only technical aspect of the proof is to make sure that the
operators ð1

2
I þ KÞ�1 and K map zero-mean functions to zero-mean functions. This is a well-known prop-

erty of the single-layer potential [10,14,16].
In summary, the integral equation ð1

2
I þ kKÞr ¼ f is well-behaved and invertible so long as the right-

hand side f(t) has mean zero. Returning to our interface problem (3.3), this requires that
Z
C
�k

oudr

om
ðyÞ dsy ¼ k

X
xp2D1

qp
�1

¼ 0. ð3:11Þ
This is entirely consistent with our numerical observations in the previous section.
Since we cannot assume the net flux is zero across the interface, we next decompose the right-hand side

into a constant and zero-mean part: f ðtÞ ¼ �f : 1ðtÞ þ f ?ðtÞ. We also decompose the unknown density into
a constant and zero-mean part: rðtÞ ¼ �r1ðtÞ þ r?ðtÞ. The integral equation (3.3) can then be written as
1

2
I þ kK

� �
r? ¼ � 1

2
I þ kK

� �
�r1� k

oudr

om
. ð3:12Þ
In order for the right-hand side to have mean zero (be orthogonal to 1 on C), we must have
1

2
I þ kK

� �
�r1; 1

� 	
¼ �k

oudr

om
; 1

� 	
¼ �k

Z
C

oudr

om
ðyÞ dsy.
Simple algebra and the fact that K�1 ¼ ð� 1
2
Þ1 [10,14,16] yields
1

2
I þ kK

� �
�r1; 1

� 	
¼ 1

2
ð1� kÞ

Z
C

�rðyÞ dsy ¼ �k
Z
C

oudr

om
ðyÞ dsy.
Thus, the integral equation (3.12) is well-behaved if we set the constant part of the single-layer density
according to:
Z

C

�rðyÞ dsy ¼
�2k
1� k

Z
C

oudr

om
ðyÞ dsy ¼

1

�0
� 1

�1

� � X
xp2D1

qp. ð3:13Þ
It is possible to derive the same formula from a simple physical argument based on flux continuity. In short,
the driving field is responsible for a flux difference defined by ð�0 � �1Þ

R
C

oudr

om ðyÞ dsy across C. The constant
part of the single layer density

R
C�0�rðyÞ dsy is therefore chosen to compensate for this flux difference, yield-

ing the result:
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Z
C

�rðyÞ dsy ¼ � �0 � �1
�0

� �Z
C

oudr

om
ðyÞ dsy ¼

1

�0
� 1

�1

� � X
xp2D1

qp. ð3:14Þ
3.2. Multiphase materials

Suppose now that a finite number of smooth bounded inclusions are embedded in a homogeneous back-
ground material with conductivity �0 but that each inclusion is allowed a distinct conductivity. Dk will de-
note the region occupied by the kth inclusion with conductivity �i and its boundary will be denoted by Ci.
Assuming there are I inclusions, the total interface will be denoted by C ¼ [I

i¼1Ci. We let u denote the total
potential with P-point sources xp 62 C as in the previous subsection. The solution can again be represented
in terms of a single-layer potential
uðxÞ ¼
Z
C
Gðx; yÞrðyÞ dsy þ

XP
p¼1

udrp ðxÞ; ð3:15Þ
where udrp is defined in (3.2). Imposing the flux continuity condition �i
ou
om�

¼ �0
ou
omþ

at every interface point
y 0 2 Ci, we obtain
1

2
rðy0Þ þ ki

Z
C

oG
omðy0Þ ðy

0; yÞrðyÞ dsy ¼ �ki
oudr

omðy0Þ ðy
0Þ; ð3:16Þ
where ki ¼ �i��0
�iþ�0

. This is a system of integral equations, coupling the unknown charge densities on all inter-
faces Ci, i = 1,. . ., I.

Theorem 3.1. [7]Suppose that the homogeneous equation
1

2
rðy0Þ þ ki

Z
C

oG
omðy0Þ ðy

0; yÞrðyÞ dsy ¼ 0; y0 2 Ci ð3:17Þ
has a nontrivial solution. Then at least one of the ratios ki lies on either the ray k P 1 or the ray k < �1.
Corollary 3.2. As long as all the ratios �i/�0 are bounded and have nonnegative real part, the integral equation

(3.16) has a unique solution.

Let Kij denote the restriction of the operator K from L2(Cj) to L2(Ci) defined by
Kijrj


 �
ðy0Þ ¼

Z
Cj

oG
omðy0Þ ðy

0; yÞrðyÞ dsy for y0 2 Ci. ð3:18Þ
We leave it to the reader to verify that ðK�
ij1Þðy0Þ ¼ � 1

2
dij for y 0 2 Ci and that ÆKij1,1æ = 0 if i 6¼ j.

Restricting our attention for the moment to the two inclusion problem in the limit k1, k2 ! 1, we have

ð1
2
I þ KÞr ¼ f, where K ¼ K11 K12

K21 K22

� �
, r ¼ r1

r2

� �
, and f ¼ �k1 oudr

om

�k2 oudr

om

" #
. This system has a solution only if f

is orthogonal to the null space of ð1
2
I þ KÞ�. Since ð1

2
I þ K�Þ 1

0

� �
¼ ð1

2
I þ K�Þ 0

1

� �
¼ 0

0

� �
, the solvability

condition is that the right-hand have mean zero on each interface:
f;
1

0

� �� 	
¼ 0 and f;

0

1

� �� 	
¼ 0. ð3:19Þ
This condition is satisfied a priori only when the total charge contained in either D1 or D2 is zero.
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In order to make the right-hand side of the integral equation ð1
2
I þ KÞr ¼ f orthogonal to both

1

0

� �
and

0

1

� �
, we follow the same recipe as above, and decompose r on each interface into a constant part and a

mean zero part: ri ¼ �ri þ r?
i . Then,
1

2
I þ K

� �
r?
1

r?
2

� �
¼

f1 � �r1K111� �r2K121

f2 � �r1K211� �r2K221

� �
. ð3:20Þ
The solvability conditions (3.19) is satisfied if both
f1 � r1
1K111; 1

� 
¼ 0 and f2 � r1

2K221; 1
� 

¼ 0. ð3:21Þ
Therefore, we set �ri as follows:
Z
Ci

�riðyÞ dsy ¼
�0 � �i
�0

� �Z
Ci

oudr

om
ðyÞ dsy ¼

1

�0
� 1

�i

� �X
xp2Di

qp. ð3:22Þ
By analogy with the single inclusion case, it is reasonable to expect that the integral equation (3.16) is
well-behaved for ki close to 1 once we define the unknown functions to be r?

i , having enforced (3.22) for
the constant part �ri. We do not have a proof in the general case and leave this as a conjecture.
3.3. Layered materials

Our analysis is easily extended to nested inclusions (layered materials) with non-intersecting boundaries.
For this, we begin by assuming that the computational domain is given by X0 with conductivity �0. For
every interface Cj within X0, we let Xj denote its interior and set the conductivity in Xj to be �j. If Xj itself
contains additional interfaces, each of these (say Ck) defines a subregion (say Xk) and a distinct conductivity
(say �k). This construction is carried out recursively until all interfaces have been accounted for. Examples
with one or two level of nesting are shown in Figs. 4 and 5.

The solution is again represented in the form (3.15), resulting in an integral equation of the form (3.16). On
the i-th interface, we decompose the charge density ri as ri ¼ �ri þ r?

i . Considerations analogous to those
above show that the right-hand side of the integral equation for r?

i on each interface has zero net flux if
Z
Ci

�riðyÞ dsy ¼
1

�iþ
� 1

�i

� �X
xp2Xi

qp; ð3:23Þ
where �iþ denotes the conductivity in the region to the exterior of Ci.

Remark 3.1. In many applications, one is given the integral equation (3.16), but the right-hand side on
each interface is specified as raw data, rather than having the driving field in analytic form. In that case, the
recipe (3.23) must be modified slightly and expressed in terms of the net fluxes

R
oudr
om dt on each interface.

This is straightforward to do, since the total charge in the interior of a simply connected domain D with
interface oDi is given by
Q ¼ ��i

Z
oDi

oudr

om
ðyÞ dsy.
If a region Xi contains several such inclusions, the net charge in each must be computed. The total charge
in Xi is then the sum of the individual subregion contributions plus the integral of the given interface data
on oXi itself. In the case of nested inclusions, this procedure is most easily carried out recursively, beginning
with the innermost subregion (subregions).
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3.4. Fast solution of integral equations

Consider now the numerical solution of the interface problem using the integral equation (3.16), which
we write explicitly as
1

2
rðy0Þ þ kj

2p

Z
C

o

omðy0Þ log
1

jy0 � yj rðyÞ dsy ¼ �kj
oudr

om
ðy0Þ ð3:24Þ
for y 0 2 Cj. We select Nj points on the boundary Cj, equispaced in arclength and define hj = jCjj/Nj, where

|Cj| denotes the length of boundary. The total number of discretization points is N ¼
PM

j¼1Nj. Associated
with each such point, denoted yji , is an unknown charge density value rj

i . In the following, we let mi,j denote
the normal at the point yji . Using the trapezoid rule, we replace (3.24) by
1

2
rj
i �

kj
2p

XM
l¼1

hl
XNl

k¼1

o

omi;j
log jyji � ylkjrl

k ¼ �k
oudr

om
ðyjiÞ ð3:25Þ
for i = 1, . . . ,Nj and j = 1, . . . ,M. Care must be taken when yij ¼ ykl to use the appropriate limit 1
2
jðykl Þ in

place of o
omi;j

log jyji � ylkj, where j denotes curvature. The trapezoidal rule is used for quadrature since it
achieves superalgebraic convergence on smooth contours.

We solve the linear system (3.25) iteratively, using the generalized minimum residual method GMRES
[4,20,21], since it achieves rapid convergence for well-conditioned linear systems. The amount of work re-
quired to solve the linear system, scales like J Æ f(N) where J is the number of iterations and f(N) is the
amount of work required to compute matrix-vector products. Since K (or its discrete version) is dense, na-
ive methods require O(J Æ N2) work. The Fast Multipole Method, however, allows the cost to be reduced to
O(N), so that the cost of solving the linear system is O(J Æ N). The algorithm has been described in great
detail elsewhere (see, for example, [2,6,8,9,12,17,19]).
4. Numerical results

We will refer the integral equation method derived above as the mean-zero integral equation to contrast
it with the classical approach. In this section, we illustrate the behavior of the method with two examples.

The code has been implemented in Fortran in slightly greater generality than discussed above. More pre-
cisely, we allow Neumann conditions to be imposed on the boundary of a collection of interior ‘‘holes’’ in
addition to imposing continuity conditions at interfaces. This simply involves adding a single layer density
on each Neumann boundary.

Example 1 (Convergence acceleration). In the first example (Fig. 4), we have five interfaces and let the
driving field be that induced by two point sources (one contained in the multilayered inclusion on the left
and one contained in the multi-layered inclusion on the right). 200 equispaced points are used in the
discretization of each interface.

The central figure shows the rate of convergence of GMRES for the classical integral equation at low &
high contrast. The right-hand figure shows the rate of convergence for the mean-zero integral equation.
Example 2 (Accuracy). In our second example (Fig. 5), we consider an interior Neumann problem with
one hole on which Neumann conditions are imposed and five additional material interfaces. The driving
field is again defined by two point sources, one in the upper right inclusion and one in the lower right
inclusion.



Fig. 4. Simple and multilayered inclusions in a background of conductivity one. In the ‘‘low contrast’’ case, (data marked by dots in
right-hand figure), the conductivity in the black regions is set to 102 and in the grey regions to 101. In the ‘‘high-contrast’’ case, (data
marked by · in right-hand figure), the conductivity in the black regions is set to 106 and in the grey regions to 103. The center plot
illustrates the performance of the classical integral equation at low and high contrast. The right-hand plot shows the performance of
the mean-zero integral equation.

Fig. 5. For example 2, the conductivity in the light grey region is set to 1, in the dark grey region to 102, and in the black region to 104.
The right-hand plot shows the errors in the computed density with 50 to 800 points per boundary/interface component. In the center
plot, the x-axis denotes arclength on the total boundary/inteface and the y-axis the error as a function of arclength for the 50-pt and
600-pt discretizations. r2400 was used as a reference solution (2400 pts per component).
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As is clear from the figure on the right, the error in the computed solution decays rapidly with each mesh
refinement, achieving better than ten digits of accuracy with only 800 points.
5. Conclusions

We have described a simple modification of the classical integral equation for the solution of electrostat-
ics and heat conduction problems in piecewise homogeneous composite materials. While the classical
equation becomes ill-conditioned at high contrast ratios, the new formulation (which we refer to as the
mean-zero integral equation) maintains high precision and rapid convergence rates. For the sake of stabil-
ity, it may be advantageous to explicitly add the constraint
Z

Ci

�riðyÞ dsy;
but we have not incorporated this extra equation into the solver.
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The mean-zero equation is derived from three observations: (1) that the classical integral equation at infi-
nite contrast is the same as that for an interior Neumann problem, (2) that projecting the right-hand side of
the integral equation onto the range of the Neumann integral equation is the natural thing to do, and (3)
that this projection can be carried out explicitly in terms of a constant density on each interface. We have
only proven the boundedness of the inverse operator for a single inclusion, but suspect that a more involved
analytic argument can be carried out in the general case. Experimental evidence (with many examples) sup-
ports this hypothesis.

We believe that the mean-zero equation will be of value in capacitance extraction and heat transfer cal-
culations. Application of our approach to more complex geometries, such as cases where multiple subdo-
mains meet at a single point, is straightforward but technically involved. Exterior Dirichlet problems, where
a boundary/surface is coated with a high dielectric material can be handled using similar ideas. While the
total charge on the Dirichlet surface is not known a priori, it can be attributed to an unknown constant as in
[5] and incorporated into a mean-zero formulation. These extensions will be reported at a later date.
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